Plaquettes de tournage en carbure

Carbide turning inserts are the unsung heroes of machining. They help us shape, carve, and perfect metal into the precise forms we need for countless applications. If you’re involved in machining or manufacturing, understanding carbide turning inserts is crucial. This guide will dive deep into the world of carbide turning inserts, covering everything from types and applications to selecting the right one for your needs.

Overview of Carbide Turning Inserts

Carbide turning inserts are cutting tools used in lathes for turning operations. They are made from carbide, a compound of carbon and tungsten, known for its hardness and resistance to wear. These inserts are designed to handle the high-speed cutting of tough materials like steel, stainless steel, cast iron, and non-ferrous metals. They come in various shapes, sizes, and grades, each tailored to specific cutting conditions and materials.

Types of Carbide Turning Inserts

There are numerous types of carbide turning inserts, each suited for different machining tasks. Here’s a detailed table summarizing the main types of carbide turning inserts:

Type d'insertionFormeTypical UseAvantagesInconvénients
C-Type (CNMG, CNMM)RhombiqueGeneral turningVersatile, strong edgesLimited chip control
D-Type (DNMG, DNMM)55° RhombicOpérations de finitionGood for light cutsFragile edges
S-Type (SNMG, SNMM)CarréHeavy-duty turningStrong cutting edgesLess flexible in shapes
T-Type (TNMG, TNMM)TriangleEbauche et finitionMulti-corner usabilityLower strength edges
V-Type (VNMG, VNMM)35° RhombicFinition soignéeExcellent for precise cutsFragile, less durable
W-Type (WNMG, WNMM)TrigonHeavy-duty roughingHigh strength, versatileComplex chip formation
R-Type (RNMG, RNMM)RondProfiling, groovingStrongest insertLimited corner usability
carbide turning inserts

Applications of Carbide Turning Inserts

Carbide turning inserts are used across various industries due to their versatility and durability. Here’s a table detailing their applications:

L'industrieApplicationInsert Type Recommended
AutomobileEngine components, shaftsC-Type, S-Type
AérospatialeStructural parts, turbine bladesV-Type, W-Type
Dispositifs médicauxInstruments chirurgicaux, implantsD-Type, V-Type
Pétrole et gazPipe fittings, valvesT-Type, S-Type
Ingénierie généraleMachinery parts, toolsC-Type, T-Type
ÉlectroniqueEnclosures, connectorsD-Type, R-Type
Matériel de constructionHydraulic components, framesS-Type, W-Type

Material Properties of Carbide Turning Inserts

Comprendre les propriétés des matériaux carbide turning inserts is crucial for selecting the right one for your specific needs. Here’s a detailed table of these properties:

PropriétéDescription
DuretéHigh hardness, typically 80-90 HRA
SoliditéResistance to breaking and chipping
Résistance à l'usureAbility to withstand wear from abrasive materials
Conductivité thermiqueHigh, dissipates heat effectively
Stabilité chimiqueRésistant à l'oxydation et aux réactions chimiques

Composition and Characteristics of Carbide Turning Inserts

Carbide turning inserts are composed of several elements, each contributing to their unique characteristics:

ÉlémentPourcentage (%)Caractéristique
Tungstène (W)70-80Assure la dureté et la résistance
Carbone (C)6-10Forms the carbide compound, enhancing hardness
Cobalt (Co)5-10Binds the tungsten carbide particles together
Titane (Ti)1-5Increases toughness and wear resistance
Tantale (Ta)1-3Améliore la résistance à haute température
Niobium (Nb)0.5-2Improves resistance to thermal shock

Dureté, solidité et résistance à l'usure

Carbide turning inserts must balance hardness, strength, and wear resistance to perform effectively. Here’s a comparative table:

PropriétéDescription
DuretéEnsures the insert can cut through tough materials.
La forcePrevents the insert from breaking under high pressure.
Résistance à l'usureExtends the insert’s life by resisting wear and tear.

Spécifications, tailles, formes et normes

Carbide turning inserts come in various specifications to suit different machining tasks. Here’s a table detailing these specifications:

SpécificationsDétails
TailleRanges from 1/8″ to 1″ in cutting edge size
FormeRhombic, square, triangle, round, trigon
NormesISO, ANSI, DIN, JIS

Fournisseurs et détails des prix

Here’s a list of notable suppliers and their pricing details for carbide turning inserts:

FournisseurPaysFourchette de prix (par encart)
KennametalÉTATS-UNIS$5 – $30
Sandvik CoromantSuède$8 – $40
Matériaux MitsubishiJapon$7 – $35
Outils SecoSuède$6 – $33
Outils WalterAllemagne$9 – $37
IscarIsraël$10 – $45
Sumitomo ElectricJapon$8 – $38
TungaloyJapon$7 – $34
KyoceraJapon$6 – $32
TaegutecCorée du Sud$5 – $30

How to Select the Right Carbide Turning Inserts

Choosing the right carbide turning insert can significantly impact your machining efficiency and product quality. Here’s a table to guide you through the selection process:

CritèresConsidérations
Type de matériauChoose inserts suited for the material you are machining.
Vitesse de coupeHigher speeds require tougher, more wear-resistant inserts.
Vitesse d'alimentationMatch the insert to your feed rate for optimal performance.
Profondeur de coupeEnsure the insert can handle your required depth of cut.
Puissance de la machineSelect inserts compatible with your machine’s power capacity.
Finish RequirementsChoose inserts that can achieve your desired surface finish.

Comparaison des avantages et des limites

Every type of carbide turning insert has its own set of advantages and limitations. Here’s a comparative table to help you understand them better:

Type d'insertionAvantagesLimites
C-TypeVersatile, strong edgesLimited chip control
D-TypeGood for light cutsFragile edges
S-TypeStrong cutting edgesLess flexible in shapes
T-TypeMulti-corner usabilityLower strength edges
V-TypeExcellent for precise cutsFragile, less durable
W-TypeHigh strength, versatileComplex chip formation
R-TypeStrongest insertLimited corner usability

Metal Powder Models for Carbide Turning Inserts

Here are some specific metal powder models used in the production of carbide turning inserts, along with their descriptions:

  1. WC-Co (carbure de tungstène-cobalt):
  • Description: A composite material made of tungsten carbide particles bonded with cobalt.
  • Caractéristiques: High hardness, toughness, and wear resistance.
  1. TiC (carbure de titane):
  • Description: A carbide compound of titanium and carbon.
  • Caractéristiques: Excellent wear resistance and chemical stability.
  1. TaC (carbure de tantale):
  • Description: A refractory carbide of tantalum and carbon.
  • Caractéristiques: High melting point, strength, and hardness.
  1. NbC (carbure de niobium):
  • Description: A hard refractory metal carbide.
  • Caractéristiques: High hardness, thermal conductivity, and chemical resistance.
  1. VC (carbure de vanadium):
  • Description: A carbide of vanadium and carbon.
  • Caractéristiques: Enhances toughness and wear resistance.
  1. CrC (Chromium Carbide):
  • Description: A compound of chromium and carbon.
  • Caractéristiques: High hardness and corrosion resistance.
  1. Mo2C (Molybdenum Carbide):
  • Description: A carbide compound of molybdenum.
  • Caractéristiques: Good hardness and thermal stability.
  1. WC-TiC-TaC (Composite Carbide):
  • Description: A combination of tungsten carbide, titanium carbide, and tantalum carbide.
  • Caractéristiques: Superior wear resistance and toughness.
  1. ZrC (Zirconium Carbide):
  • Description: A carbide of zirconium.
  • Caractéristiques: High hardness and thermal conductivity.
  1. HfC (Hafnium Carbide):
    • Description: A refractory carbide of hafnium.
    • Caractéristiques: Exceptional hardness and high melting point.
carbide turning inserts

FAQ

What are carbide turning inserts made of?
Carbide turning inserts are primarily made from tungsten carbide, cobalt, and other elements like titanium, tantalum, and niobium.

Why are carbide inserts preferred in machining?
They are preferred for their hardness, wear resistance, and ability to handle high-speed cutting.

How do I choose the right carbide turning insert?
Consider the material type, cutting speed, feed rate, depth of cut, machine power, and finish requirements.

What are the main types of carbide turning inserts?
The main types include C-Type, D-Type, S-Type, T-Type, V-Type, W-Type, and R-Type.

Can carbide turning inserts be reused?
Yes, they can be indexed or rotated to use multiple cutting edges.

What is the lifespan of a carbide turning insert?
It depends on the material being machined and the cutting conditions but typically ranges from several hours to days of continuous use.

Are carbide turning inserts standardized?
Yes, they adhere to international standards such as ISO, ANSI, DIN, and JIS.

What industries use carbide turning inserts?
They are used in automotive, aerospace, medical devices, oil and gas, general engineering, electronics, and construction equipment industries.

How do carbide turning inserts affect machining performance?
They enhance machining performance by providing precise cuts, reducing downtime, and improving surface finishes.

What are some top brands for carbide turning inserts?
Top brands include Kennametal, Sandvik Coromant, Mitsubishi Materials, Seco Tools, Walter Tools, and Iscar.

Conclusion

Carbide turning inserts are indispensable tools in modern machining, offering unparalleled performance in terms of hardness, toughness, and wear resistance. Understanding the various types, applications, and selection criteria can help you choose the right insert for your specific needs, enhancing productivity and ensuring high-quality results in your machining operations.

en savoir plus Carbure de tungstène

Partager cet article :

Laisser une réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Table des matières

Les plus populaires

Prendre contact

Prenez contact avec nous

Veuillez activer JavaScript dans votre navigateur pour remplir ce formulaire.
Sur la clé

Articles connexes

Contact Plus vrai maintenant

Veuillez activer JavaScript dans votre navigateur pour remplir ce formulaire.